If it's not what You are looking for type in the equation solver your own equation and let us solve it.
e^2-100=0
a = 1; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·1·(-100)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*1}=\frac{-20}{2} =-10 $$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*1}=\frac{20}{2} =10 $
| 2x-2.4=4 | | -3c+4=2 | | 6x^-5=0 | | -2(4t-3)+4t=6t-3 | | 9x^-6=20 | | 9x+5=6x-72 | | 6(3-x)=-2x-2 | | 3(x-5)=-x+5 | | (5x-3x)+4=3+7 | | 5(2y-1)=12y-5-2y | | x-3-3x=-x-(8-4) | | 26/4=130/n | | -(-3x+5+2x)=9-2 | | 64-x^=-36 | | 2x/5-1/3=1 | | 4x-4-x=-(2x+5) | | t+3/4+8=40 | | t+34+8=40 | | 3x-(4x-5)=-2x+2 | | 4x-3=5(3x+6) | | 3x–(4x–5)=−2x+2 | | -x+9=2x-6 | | (2x-3)=x+5 | | -10m+5=-15 | | V(x)=(8-2x)(6-2x)(x) | | x(x+5)=7x+35 | | V(x)=(8-2x)(6-2x) | | -4y-5=-25 | | 10x+6=2x–8 | | 2t+14=100 | | 2+(3-x)=8-2x | | V(a)=(8-2a)(6-2a) |